
AD-A130 54 ON THESSUPERLINEAR AMBROSETTIPRODI PROBLEM U)
W IS CONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
D G DE FIGUEIREDO MAY 83 MRC-TSR-2522 DAAG29-80-C 0041

UN SSIFED 5-ECLhEE F/GhE/1 E
*flflflflflsfl.. 8



1j36

IIIjIL25 *I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A



NRC Technical Summary Report #2522

ON THE SUPERLINEAR AMBROSETTI-PROOI
PROBLEM

Djairo G. de Figueiredo

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

May 1983

C (Received April 20, 1983)

L-J._J
LL-

Approved for public release
9 Distribution unlimited

ELECTE
Sponsored by ~I

SU. S. Army Research OfficeL
P. 0. Box 12211
Research Triangle Park
North Carolina 27709

,r+83 07 20 0-8
L .. liraI I .,.I 4



UTIVERSITY OF VISCOUN-MADISON
MATHEMATICS RESEARCH CENTER

ON THE SUPERINEAR ANDROUETTI-PRODI PROSLEN

Djairo G. da Pigueiredo*

Technical Sumary Report #2522
Nay 1983

ABSTRACT

This paper establishes the existence of two solutions for some

problems of the Ambrosetti-Prodi type. The following result is a

sample of the results.' Let g : R + R be a C -function such that

lift g'(s) < 1 < la g'(s), where )1 is the first eigenvalue of the

Laplacian with Dirichlet boundary conditions, and the limits could be

infinite. Suppose that g behaves at +- like up , 1 < p < (N + 2)/(N - 2)

or even like u(N+2)/(N-2)/In u, where N o 3. Let n be a bounded smooth

domain in RN  and let * be the first eigenfunction corresponding to X,

which is ) 0 in 0. Then given any h e ca () such that f h# - 0, there

is t0  R such that the Dirichlet problem

S-Au - g(u) + t# + h, in fl, u - 0 on 3a

has at least two C2 ,a  solutions for each t < to. The author uses the

method of monotone iterations to obtain the first solution and a variational

argument to get the second. The variational solution is subsequently

regularized.

ANS (NOS) Subject Classifications- 35365, 47H07, 58E30

Key Words: Semilinear elliptic boundary value problem, monotone

iteration method, mountain pass theorem
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Djairo G. de rigusireoft

zWIUooUCTZO. Let 2 be a smooth bounded domain in R us w consider the semilinear

elliptic boundary value problem

(1) -hu - (x.u) +f(x) in 0, u -0 on 30,

where t(x) is .sm given e-function ini 2, and the nonlinearity 9 satisfies the

smoothness condition below, besides other conditions that will be timely introduced as we

proceed:

(2) g xl R + R is a C 1-function.

Problem (1) is said to be of the Ambrosetti-Prodi type if

(3a) lim ue Al.~ and (3b) A <him ainf s

where the inequalities hold uniformly in 11, and the limits could assume value

-or 4 , respectively, on the whole of 2 or an subsets of positive measure. Here

I I denotes the first sigenvalue of the sigenvalue problem -au Au in Q2. u - 0 on

3Q. Let # be the eigenfunction corresponding to X I which is >0 in n2 and

* f* 2 1 And let N be the subspace of C*(i) generated by *~and
M1 - (u e C*(fl) : f u# - 01. Consequently any f e C(1() can be uniquely written as

f - t# + h, with t e n and h e U'. Using this decomposition ws shall look at the

par ame trized form of Mt)

(I t )-Au - g(x~u) + t# + h in (2, u - 0 on 30

Conditions (3a) and MYW are Implied by the more restrictive conditions (4a) and (4b),

respectively:

(4 ) lim sup Aaoessj4b0<li ft q~ x s

where g, denotes the partial derivative of g with respect to a. [ TcTB&

"biveraidade do Brasilia and Quggenheim tellow (1963). Jslriain _

8ponsored by the United *tatee Army under Contract Wo. DRAA29-0C-0041. Dsribtin* Dist r Sbut ion/
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Viewing the future use of variational methods we suppose

_____S N + 2

1 O <m if N-2

So assumption on the growth of g as s - will be necessary. Also by force of some

desirable Palais-Smale condition for a functional associated with our problem (1) we found

it necessary to assam the following technical condition, but only in the case N N 3

and (N + 1)/(N - 1) < a C (N + 2)/(N - 2):

(6) li inf (x~s) -OG(xs) ) 0 , for some 6 > 2
8+4" 2 g(xs 

2/ 1
)

+ 11

where G(x,s) f f g(x,)d9.
0

Theorem 1. Assume (2), (3b), (4a), (5) and (6). Then for each given h e Is there

exists to e R such that (it has at least two C2 ,a  solutions for t < to.

The first result of this sort was proved by Ambrosetti-Prodi r, under much stronger

assumptions, but yielding a sharper conclusion. In their work as well as in the subsequent

work of other authors, e.g., Berger-Podolak (2), Amann-Hess (3], rucik (4], the

nonlinearity g is assumed to have linear growth. Kazdan-Varner (51 relaxed this

condition but obtained only one solution. Dancer [6) obtains a second solution, provided

a 4 (N + 1)/(3 - 1) in (5). He uses a topological degree argument, and a crucial point

in his proof is obtaining a priori estimates on the solutions of (It). Under his

restriction on a these estimates are readily obtained using a technique due to Br6zis-

Turner (7]. For nonlinearities g growing faster than (N + 1)/(H - 1) this is not a

simple matter, and as far as we know estimates are not available yet. We found it easier

to obtain a second solution in this case using a variational method. Here also there is a

delicate point which is the establishment of the Palais-Smale condition for some associated

mz
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functional. We required a technical condition (6), which we believe to be not too

restrictive. ror example, pure powers like g(xs) - a(x)OP for large a and

1 < p < (W + 2)/(X - 2) do satiSfy (6). More generally the condition introduced by

Ambroeetti-Rabinowitz t8 in similar situations also gives (6). For the early history of

the Ambrosetti-Profi problem see the survey paper [9]. go should also mention the work of

Nerestycki-LLons 1171 on the euperlinear Ambroetti-Prodi with convex nonlinearities 9.

We mention that the steps in the proof of Theorem 1 will make clear that a theorem of

Ambrosetti-Rabinowita [9] on the existence of positive solutions for some semilinear

elliptic equations can be slightly extended. For completeness let us state it in case of

the Laplacian.

+ +

Theorem 2 [Ambrosetti-Rabinowitz]. Let g : 0 x R * R be a Carath6odory function

satisfying conditions (3b), (5) and (6) above as well as g(x,O) - 0 and

lim sup g(xs) < A

Then the boundary value problem

-Au - g(xu) in n, u - 0 on DO

has a nontrivial positive solution u in *I. If g is Ca  
then u ec2u (5).

The above theorem should be compared with Theorem 2.3 in de Figueiredo-Lions-Nuosbaun

[10]. Although Theorem 2 above applies to more general second order elliptic operators and

nonlinearities g depending on x, its technical condition (6) seems more restrictive

than the requirements made in Theorem 2.3.

The paper Is divided in three parts. In the first section we prove that there exists

a t2 e R such that for all t C t2, problem (It ) has a minimal negative solution

u Ct e C2(0) such that the eigenvalue problem

-Av- g'(x,u )v - v in 0, v - 0 on DO
% t

has a positive first eiqenvalue u 1 . Zn the second part we take an appropriate truncation

of the nonlinearity g and construct a functional whose critical points are precisely the

-3-

-- ..*... -



Wek O"At of (it). It Is then I that the minimal solutioe ut  found in the

ireolo. sect ion Is a local minimu of this functional. Under our assumptons the

functional is shown to satisfy the Palais-smale -ondition. ibe mountain pass theorem of

19) is applied to get a second notation of (1t) in . its regularity in the case

N (3 + 2/u - 2 is seen by the standard way using a bootstrap argument. The case

a (Y + 2)/ - 2) requlres great deal more of work. We pro it in Sction 3 using

an argument due to 3IrAIe-Kato (1.

The novelty of the present work is the treatment of suerlinear nonliearities g

with growth at infinite "touching" the critical exponent (H + 2)/(V - 2). in the sense of

condition (5).

The author thanks professor Antonio mbrosetti for his hospitality at the Scuola

Znternazionale Superiors di Studi Avansati (Trieste-Italia), where part of this work was

don.
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1. IninscM or A MINIMAL NMTIA X gLogmO,. Since so of the assertions made in the

present section are true under weaker aesmptions tham the ones placed In Theorem 1, we

shall state them separately. Also this will make clear the role of (4a) which we believe

it could be replaced by (3a), as vell as the role of (6) which eventually could be either

weakened or dropped altogether.

Loma 3. Assume (3a) and (3b). Then there exists a number T. independent of h e N

such that 01t ) has no solution for t > T.

Proof. It follows from (3a) and (3b) that there are numbers C > 0 and V < I1 Pj such

that

(7) g(x,8) ; ps - C and g(x,s) O Ps - C

for all x e 9 and all a e R. Take the inner product of (it ) with *, integrate by

parts, and estimate f g(x,u)# using (7). This will give an upper bound on the values

of t for which (1t ) has a solution. 0

In this section we use the method of monotone iteration to get a minimal solution of

(I ). We say that u e C2(9) is a subsolutLon of (It ) if

t

(8) -Au ( g(x,u) + t# + h in 9, u ( 0 on 39

A supersolution is defined likewise by changing in (8) the inequalities 4 for ). It is

well known, see for instance (12), (131, that if (It ) has a subsolution u and a

suspersolution u, such that u ( u, then (I) has a solution ut such that u ( ut ( u

and if u in any other solution with u 4 u ( u then ut ( u. This solution is obtained

by an iterative method.

Lea 4. Assume (3a) and (3b). Given h e Ut and a compact interval (a,bI. there is a

function w e C2* (i) with w - 0 on 39 such that: (i) w is a subsolution of (I t )

for each t e [a,b], (i) w ( v for all v which are supersolutions of (I t ) with

t e [a,b). In particular, w bounds from below all solutions of (i t ) for t e le,b).

-5-
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!oot. The unique solution w of the linear problem

-6v pw - C + o + h in A, u - 0 on 3D

whore and C were introduced in (7), satisfies all the requirements of the lemma. E3

Les S. Asuma (3a) and (3b). Given h e C , there is a te •R and a function V In

C2 ,A(i) which is <0 in A. -0 in 32 and which is a supersolution for all problems

(I t ) with t 4 t I .

Proof. Let C ) 0 and p ) N be given. As a consequence of the Sobolev imbedding

w2,p(9) C CI'a () and the strong maximum principle, we see that there are numbers

a,K > 0 such that

(9) -X < v - # < 0 in A for v e w2,p(A) with v - 0 on 35), and IvI (

By the LP-regularity theory, the operator -A with Dirichlet boundary condition has a

bounded inverse from LP to Wp i.e., there is a constant C ) 0 such that

(10) IviW2,p 4 CICIl for -Av - C in a), v - 0 on ag

Let

(11) m = max(fg(x,s) + h(x)l : x e i, -x c s c e}

and take subdomains A1 and 52 of 5) such that 01 C S1 C a2 C A2 C Q and the Lebesque

measure of Q\QI is smaller than [e/Cm] , where C and m have been introduced in (10)

and (11) respectively. Next define a C7 function C which is 0 in O1 -m in Q\ 2

and assumes values between 0 and m in n2\S . Let v be the unique solution of the

Dirichlet problem -Av 
=  

in 0, v = 0 on 3DO. Using (10) and the choice of n1 we

have

(12) Ive W2, p ( CII Ca 00\2 1 1/p l"4

We claim that W - v - Q# is a supersolution of (i t ) provided we choose t sufficiently

large negatively Indeed, if x e 0\6 2

-6-



CA - a - GSX ) qtx,v - a#) + h(x) all#

where the inequality follows from (9), (11) and (12). If x e 02# use the fact that

#(x) is bounded away from 0 by a positive constant for x e S 2 and obtain t such

that C(x) ; g(x,v - a#) + h(x) + t*. Then, for x e 02

-AW - C - ext* ) g(x,v - u4) + h(x) + (t -

Thus the lemma is proved with t, min[t - ex 1 , - CA 1 ].

Remark. Kazdan-Varner (5] under the assumptions of Leam S have proved by a similar

argument the existence of a supersolution which happens to be not negative in Q. It is

apparent that problem 1t ) could have a supersolution for t > t
1
, although it is not

necessarily negative.

Using the method of monotone iteration it follows

Corollary 6. Assume (3a) and (3b). Given h e WL, there is a t1 e R such that problem

(It ) has a negative solution ut Ce
2 a  

for each t 4 t1  Moreover ut  is minimal. i.e.,

given any solution u of (I we have ut 4 u.

Remark. Existence of a negative solution in the Ambroetti-Prodi is implicit in the work

of Lazer-McKenna [14]. It was essentially noted in [9], but to our knowledge was first

explicitly proved by Solimini [15]. That author [15] and Ambrosetti [161 have made a

relevant use of this fact to prove multiplicity results (existenc-i of 3 solutions) in

certain Ambrosetti-Prodi problems. We remark that all these authors work with

nonlinearities g having linear growth, essentially
+ +

g(xu) = U u - )-u + k(x,u)

where v - lin q'(u) and k(x,u) is bounded. Their interesting proof of the existence

of a negative solution apparently does not extend to our general case.

LeMa 7. As.e (3a) and (3b). Let ut be the minimal solution of (It Then the first

eigenvalue V of the eiqenvalue problem

-7-



(13) -Av - g(x,ut)v 11v in 12, v 0 on s

III )0.

roof. we follow Dancer [61 in this argument. Suppose by contradiction that MlI ' 0 and

let v > 0 be the corresponding eigenfunction nornalised by I v - 1. Look at at + Sv

and write

-A(u t + 6v) - g(xout) + t# + h + 6(xoUt)v + NIvI

and using the expression

(x,u t + 6v) - g(x,u t ) - J gs(x.,ut + r6v)6vdr

we obtain

-A+ut + 6) - g(xu t + 6v) + t# + h + 6-(J (g(x'u t ) - 4._€ ,u +r)Jdr + PI)
0

By the continuity of g' the expression inside the brackets is C 0 for 181 sm. So

if we take 8 < 0 and emall we get

-Mu t + 6v) X q(x.u t + 8v) + t# + h

which says that ut + Ov is a supersolution of (it). By emm- 4 and using the monotone

iteration method we would obtain a solution u of 0 t ) with u 4 ut + av 4 ut in 0,

contradicting Corollary 6. 0

For future purposes we need 9 1 > 0. We can prove that this is so under a slightly

stronger assumption than the one in Leama 7.

14ma 9 * Assme 14a) and (3b). Given h 0 W, there Is a t 2 e i such that the first

e*ignvalue UI of problem (13) for t 4 t 2 is positive.

Proof. Let us assume by contradiction that there are tn • such that the first

eigenvalue of (13) with t - t n is 0. So there is vt  > 0 in Of 1 v: - I such that
tn tn

-6-
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-A- got (3,Utn )vt ft

To simplify notation let us denote v n  vn un a ut  Then

fs n n

I IvV~l2 "/Jg;(xin)V2 4 C J Y.. =C

where C - sup(q(x,m); x e , a 4 0) which exists in view of assmption (4a). So we may51

aseume that v n - 0 in Hot * v0 in and a.e., and that Vnxi A hlx) for

some h e t . Clearly Ov01 2 - 1. Then

(14) - a ,,-# - 1 g(x,u )v - <. + J >.n 0 nn I n 0  un 0

where s0 < 0 and U < I (used next) are such that

g'(x,*) 4 E for x e 5, a < so

From (14) we obtain

J v 4 n + I o' q(x,un)".9Xtu nJO

Now we remark that a simple modification of Lama 5 yields the following stronger

conclusion: given any B < 0 there is a t such that problem (it ) for t • t0  has a

supermolution V 4 0+. This implies that X [ tends to 0 ae.. By Fatou's lemma,

we obtain from (15)

X, f Vo* 4 Vo '*

which is imposmible. 0

Remark. Zt follows from Lemma 8 that

f fVvf 2 - f q'(x.tIv2 2 I ,2 > 0

On the other hand we know that there are constants c, 0 > 0 such that

I IVv, 2  - I g,(xeu )v
2  c J IVv, 2  _ coj v2

which is arding's inequality. Using the previous inequality we can easily "a that

co - 0.

-9-
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2. zzSTWiZc OF TH SUCOD 80LUMIO. Now fix t 4 t2  and let w be the subsolution

associated with problem (it), by Lama 4. we now modify our function g as follows. Let

g(x,u) be the new function such that:

(i) ;(x,s) = g(xs) for x e a, s ) w(x),

(ii) 9(x,s) t oe - C end g(x,s) • Us - C for x e 0 and e e n, where C,

u_ and U are the constants in (7).

(iii) g(xs) J 0 for x e 2 and all a smaller than a certain constant s1 .

Civ) g(x,s) has linear growth at - , i.e., g(xs) is like cs, c < 0, at -a.

(v) g(xs) is a C function.

In view of (ii) we see that all eventual solutions of the modified problem (
1
t ) with g

replaced by g are bounded from below by w(x), see Lemea 4. So the solution of the

modified problem are the same as the ones of the original problem. Thus from now on we

assme that g has properties (i)-(v) above. Let us now look for solutions of (1 t ) as

critical points of the functional

J(u) f JVu2 - f G(x,u) - J fu
12

defined in H1 .

0

Lemma 9. The functional J satisfies the Palais-Smale condition.

Proof. Case 1. N > 3, (N + 1)/(N - 1) t a 4 (N + 2)/(N - 2). Let (u n ) be a sequence in

I
H0 such that W(u n)I e C and J'(u n ) n 0. We claim (un) contains a convergent

1 1
subsequence in H0 . From J'(un) 0 we have for all veiH 0

(16) if xu)v - fv Cn I I n

Let s2 < s, be such that G(x~s) 4 0 for 8 8 2f and define

Un - s2 if u n • s 2

w n -
n 0 if u p 2

-10-



Taking v - wn  In 16)j

(17) 1 I "WI2  "f g(xun)wn 4 f fw n Ln1w

and since g(x,s) P 0 for s 4 a2 we obtain that I1 I • C. It then follows from (17)

that

(18) - g(xu n)un G C + Clu n 1Un•S H
n 2

where we have used the fact that g has linear growth at - . Next from IJ(un)I C C it

follows

f IVui 2 1 C + 2 G(xu n + 2 J fu 4 C + 2 J G(xUn) + Cnu I
U) 3  H

where 83 > 0 is chosen from (6) in such a way that
*g(xOs) - OG(x,.) ; -Cs 2g( 2/N+1

,  x e .

sgg~s)X's) x e 0;0

for some given E > 0. Then
(19) J V 1 2  + u + u + f u 2 2/(N+)

n . u C + 1 H Inn(n n n
n S3 UnS3

Using (18) the first integral in the right side of (19) can be taken all over 0, which is

then estimated using (16) with v - Un:

f 12 C+ Cl2I + f v + 2c f u2g'xu 2/(N+1)
n n H I u n)S3 n nl

or

(20) f IVU 1 2 C C + CE j U g X'U 2/(N+1)

Now we claim that

(21) J g(xun)# C

Indeed, it follows from (16) with v = * that

- n 1 U - g(xUn)* - I * ' f -C) X u*n + C
H

-11-



which implies that j Un# and f g(x,u n) are bounded above. This gives (21) in view of

hypothesis (iii) on g. The integral in (20) is estimated using Older's inequality by

u~s uuUn>3 Un3

which is then bounded by ciVu n using the nardy-Sobolev inequality [7]. This shows
LI

that 1Vunl12 is uniformly bounded. So we may assume that un -& u in H0 and un + UL 1
in L

2
. now we claim that u + u in 0 . in the case a - ( + 2)/(N - 2) this follows

readily from the fact that J1 is an operator of the form identity minus a compact

operator. Although this is not true in the case a - (N + 2)/(N - 2) we can still prove

that u * u as follows. Let e > 0 be given. Then there is an a4 such that

g(x,s) ( cs 0  
for s ) s 4 . Nov using (16) with v - un - u we have, vith

C I P |unIlu|H1#

I IV(u -n  u)1 2  
- f Vu.v (u n - u) +f f(u n- u) + 27C +f g(x,u)(u -u) .

The first three terms in the above estimate go to zero as n . we estimate the last

term by

Clu n - ul + Cf ju n - uf
L Un S4

Taking this last integral over the whole of 2 with Jun I replacing Uns and using

W6lder's inequality we have finally

f IV(Un "u) 1
2 
( f Vu'V(un _ u) + Clun _ u 2 n 2

nnL 2  
I ln - 2

where C2  is a constant independent of c. This proves the claim.

Case 2. N 0 3, 0 (N + 1)/( - 1). This case is much simpler. Taking (16) with

v - un  and using property (iii) of g we obtain
(22) f IV7un 12 C + Ctun I + f g(x.u )un

n n n n4Un 4

The integral on the right side is then estimated using Hardy-Sobolev's inequality as above,

leading to a uniform bound for the L2-norm of the gradient of un . The convergence of a

subsequence follows as in Cas 1.

-12-
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Case 3. N - 2. We proceed an in Case 2. 0

Proof of Theorem I completed. In order to apply the mountain pass theorem it remains to

check that

1
(ii there is v e H0  such that J(v) t J(ut),

(ii) there is an r ) 0 such that inf(J(u) t iu - uti 1 r) > J(u

t t

To see (i) we take v - 74%

J(") - xR -f G(x.r) - f f#

From (7), G(X,) 2 ; 2 - C and we obtain
12-

(Ps ; - R2 _ CR - C

which gives the claim by taking R sufficiently large.

As for (ii) we proceed as follows. oing the fact that u t  is a critical point of

J we have:

(23) J(ut v) - J(ut) = f IVvl 2 - J [G(xu + v) - G(x,u t ) - g(x,ut)vl
t t 2

By Taylor's formula, the expression into the brackets is Ig(x,ut v2 + r(x.v) where

2 g
Ir(x.v)l 4 C(x,v) lvl 2  if Ivl 1 and t(x,v) + 0 as v + 0. On the other hand

Ir(x,v)l 4 clvi 0+1 for lvl > 1. Altogether

lr(x,v)l 4 tlvi2 + C +1

which gives

I Ir(xv)ldx C CvIA 2 + clvOl
+ 1 

4 CIVI 2 + Qiv 1+
1

L 2 L0+ H I I

Estimating (23) we obtain

J(u + V) - M~u Ijv2_Ifg.(x~u )v -v
2 

-I2 cl vo +

t tHI HI

which in view of Lama 8 (and the Reark right after it) is bounded below by

2 0+1
clvIA - clvi . So if lVII - r and r is small the quadratic term dominates and we

H H H
have claim (ii). The final step is the regularity of this solution obtained by the

mountain pass theorem. In the case a < (H + 2)/(N - 2) this follows readily via a

standard bootstrap argument. In the case a a (i + 2)/(N - 2). this follows from Theorem

10 proved in the next section. 0

-13-



3. A jE3OULARTT RlULI. In the present section we establish a regularity result for no

solutioe of aemllnear elliptic equations of second order. The growth of the

nonlinearity g(x,u) as u . m prevents a direct use of bootstrap arguments. The main

ideas of the proof below are borrowed from Vrhzis-Kato fi1l where they treat the linear

Schrbdinger equation.

Theorem 10. Let g : 0 x R + R be a Corath~odory function such that

Ig(xs)I C clal a + c(x)
L2K/(N-2 ) fnto.

where a - (N + 2)/MN - 2), c is a constant and c(x) is an L function. If

u e H (2) is a solution of0

(24) -Au a g(xu) in Q. v = 0 on 30

then ueL p  for some p> 2N/(N-2).

Remark. Once we know u e L
p 

*for some p > 2N/(N - 2) then a bootstrap argument show.

that u e C 
I . 

If more regularity of g is required (for example C
1  

in the situation

of the previous section) then u e C
2 a

.

Proof. Let X c 
0 

M() with compact support containing a neighborhood of zero. Then g

decomposes as 9 = g1 + g2 where gl(xs) - X(s)g(x,s) and g2 (x,s) = (1 - X(s))g(x,s).

consequently q(x,u(x)) where u e HI is the given solution of (24) can be written as
0

g(x,u(x)) = a(x)u(x) + b(x)

where a(x) e L"
/2 and b(x) e L2N/(N

- 2
). Now we use the following lea from 9r6zia-

Kato [11, p. 1391: "Given a(x) e L
N /2 

and r > 0 there is a constant k > 0 such that

(25) f la(x)lu 2 • C f IVul 2 + k J u2  v u e m"
C 0

Let kI be the constant in (25) corresponding to C = 1. It is easy to see that, for

k > kl, the problem

-Av + kv -a(x)v in 0, v 0 on a

has only the trivial solution v = 0. So the problem

(26) -Av + kv a a(x)v + b(x) + ku(x) in a, v = 0 on 39

-14-



has a ugmt solution v. which happens to be v - u. We now aim at proving that the
I

unique solution v e N O of the problem

-AV + kx -a(x)v + d(x) in 2. v - 0 on DO

where d(x) is an L 2 N
/(N

2 ) function, in in some L
p  

with p > 2N/I(N - 2). For that

matter we truncate a(x) an follows

-1 , if a(x) 4 -1

aI(x) - a(x) , i la(x)l ' i

tI , if a(x) ) 1

we observe that (25) holds with a replaced by ai and kC is independent of

, ~£~ 4-. The problem

(27) -Av + kv - a (x)v + d(x) in 2, v - 0 on 39

has also a unique solution v e H It follows from (25) that IV 1 4 C for all 1.

We claim that vt * v in H0, as 0 + 4-. Prom (26) and (27) we obtain

JfV(v -v)1 2 
+ k f" (V - 2  

f a it(v " 2  
+ cla I a&LN/2|vnt - A L2N/(N-2)

and the result follows applying (25) with C ) 0 sufficiently small, using Sobolev

embedding and the fact that V, v in L2 . Next we claim that the solution v of (27)

is in some L
P  

with p > 2N/(N - 2) and that

(28) IvILp I 4 constant independent of I•

We now truncate vit

-n v (x) 4 -n

VA,n (x) v vt (x) , if Iv.,(x)l 4 n

n ,if VI(x) ) n

obtaining functions in H0 In L7. To simplify our notation let us call w = v and

wn - VJn* The function wnIwnlq' , for any q A 1, is in H., and

Y(wnl lq') - qiw'nq'lv v .

multiplying equation (27) by wniwnlq1 and integrating by parts we obtain

-15-



(29) - 2-- IT( IV hi 2 )l12 + I I WnIVnIq - atwnlvnlq'i + I d-nlwnlq'l
(q + 1)

The second integral in the left side of (29) io positive and will give us no problems. he

mscond integral in the right side of (29) is estimated by

(j ldlq+1)1/(q+l)(f 1 nv tq~)q (c )

which is bounded by IdN *v ,vP(N.2)/(-2) * taking (and we shall assume from now
L2W/WN-2) , 2N/(9-2) ,tkn

on) q + 1 - 29/(X - 2), and consequently bounded independent of t. We now estimate the

first integral in the right side of (29) by

(30) f + J ( f j 'qt + I latl n + l

Iw~ln wIf(n IwI)n n

The second integral in the right side of (30) is estimated using (25) by

Q-1
C f iV(nw vnI 2 )12 + k' J jweI s/ "

All this information used in (29) leads to

2 2
IV(w n I )1 C + f ( I lq +n

where C is independent of I and n. Mtaking n 4- ., and using Sobolev embedding we

have N

(31) li- sup f IV i W-2 c
WPM

Since w n v in L It follows from (31), using reflexivity of LP  spaces
n

that v e L(q+B)N/(w 2 ) . So (26) is proved with p a (q + 1)N/(N - 2) and

q + 1 - 29/(N - 2). Finally to prove that v e LP we use the same argument as above,

since v*t  v in LaN/ ( N- 2 ) and the p-norme of v t are uniformly bounded. 0

-16-
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